首页 > 综合百科 > 黎曼函数通俗解释

黎曼函数通俗解释

时间:2025-09-07 01:00:00 浏览量:

黎曼函数(Riemann function)是一个特殊函数,由德国数学家黎曼发现提出,黎曼函数定义在[0,1]上,其基本定义是:R(x)=1/q,当x=p/q(p,q都属于正整数,p/q为既约真分数)R(x)=0,当x=0,1和(0,1)内的无理数。[1]

黎曼函数在高等数学中被广泛应用,在很多情况下可以作为反例来验证某些函数方面的待证命题。

函数可积性的勒贝格判据指出,一个有界函数是黎曼可积的,当且仅当它的所有不连续点组成的集合测度为0。黎曼函数的不连续点集合即为有理数集,是可数的,故其测度为0,所以由勒贝格判据,它是黎曼可积的。

© 转乾企业管理-验资公司 版权所有 | 黔ICP备2023009682号-22

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)